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Abstract

In earlier papers the authors introduced and analyzed the calculation

of reliable, a posteriori error estimates for finite element solutions and

discussed the design and effectivity of adaptive p-ocedures based upon

them. While most of this work concerned linear problems, this paper is

intended to show that the same approaches remain also highly effective

in the nonlinear case. As a model problem a planar, elastic rod is con-

sidered involving both material as well as geometrical nonlinearities; but,

as far as possible the discussion is kept general. For nonlinear problems

of this type interest centers on an analysis of the shape and features of

the equilibrium surface. After some general remarks about such surfaces

and the related computational problems, a general continuation process is

summarized and some of its extensions for determining limit points and

tracing stability paths are discussed. Then estimators are introduced

for the error along the solution paths and of the computed critical values.

Experimental results for the model problem show the effectivity of these

estimators and of the adaptive procedures based upon them. Then some aspects

relating to the occurrence and identification of spurious solutions are

discussed. In order to illustrate desirable generalizations of these results,

the paper ends with an outline of some results for linear problems of the

type that should be achievable also in the nonlinear case.'



Computational Error Estimates and Adaptive Processes

for Some Nonlinear Structural Problemsl )

by

Ivo Babuska 2 ) and Werner C. Rheinboldt
3 )

1. Introduction

In general, the objective of a computational solution of a physical

problem is to obtain an acceptably accurate and reliable prediction of the

behavior of the physical phenomena under study. For this the computation

should produce not only an approximate numerical solution but also some

reliable information about its accuracy. More specifically, this accuracy

should be assessed in comparison with the solution of a reasonably general

mathematical model of the problem and in terms of a specified error norm

that matches the requirements of the study.

The effectivity of such an estimation may be judged by the effectivity

index

(1.1) e= estimated error

true error

In practice it is usually more important for e to be close to one than that

1) This work was in part supported under ONR contracts N0014-77-C-0623
and N0014-80-C-0455 and NSF grant MCS-78-05299.

2) Institute for Physical Science and Technology, University of Maryland,
College Park, MD 20742.

3) Department of Mathematics and Statistics, University of Pittsburgh,
Pittsburgh, PA 15260.
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a > 1. Moreover, it is essential that e converges to one when the errors

converge to zero, so that for an accuracy of say 5% or 10%/0 the value of

1e-11 is expected to be less than, say, 0.1 or 0.2. The requirement of

designing error estimators with these properties for realistic classes of

problems and various different norms certainly represents a demanding task.

In order to achieve the stated objective of the computation adaptive

processes appear to be optimal tools. In fact, it is beginning to be a

widely accepted observation that for realistic problems it is rarely feasible

to design numerical processes which reliably and effectively achieve the

desired accuracy in the prescribed norm and yet which do not utilize some

form of adaptivity. Unfortunately, the term "adaptation" remains to be rather

ill-defined and is often used very loosely. A clarification of this concept

may require close attention to results in such fields as automatic control

theory, artificial intelligence, learning processes, etc. (see eg. [22],

[33], [42], [44]). In our context, the availability of precisely defined,

reliable error estimators appears to be central to the design of effective

adaptive procedures. The effectivity has to be measured here in terms of

the size of the class of problems for which solutions within a specified

range of accuracy are obtained with minimal cost.

These general concepts for the numerical solution of certain practical

problems have been discussed by us in several recent papers. More specifi-

cally, for the finite element solution of certain problems in structural

mechanics we introduced and analyzed the calculation of reliable, a posteriori

error estimates, [4 ], [5]1, [6]1, [9]1, [13], as well as the design and

effectivity of adaptive procedures based on these estimates, [7] [8, [10],

[11], [12], [46].

Up to now essentially all this work concerned linear problems in one

or two space dimension. Not unexpectedly, for nonlinear problems the
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situation is considerably more difficult and much remains to be done. In

the second part of [12] some results were given for the finite element

solution of a particular nonlinear model problem in Rl which showed

that a posteriori error estimates and adaptive approaches are also highly

effective in such nonlinear cases even though the corresponding theory is

as yet far from complete.

This paper is intended to be a continuation of this work on nonlinear

problems. Such nonlinear problems show special features not present in the

linear case. In particular, they involve usually a number of intrinsic

parameters and interest centers not so much on determining a few specific

solutions for fixed parameter-values but to assess the behavior of these

solutions under general variations of the parameters. In structural analysis

the parameters may characterize load points and load directions, material

properties, geometrical data, etc., and the set of all solutions depending

on these parameters has been called the equilibrium surface of the structure

(see [37]). This equilibrium surface provides considerable insight into the

behavior of the structure and its stability properties; we refer, for instance

to [30], [38] for further discussions and various examples. From a numerical

viewpoint the question then is to analyze computationally the shape and

characterize features of this equilibrium surface. For this a principal

tool is a general form of continuation process which allows a trace of a priori

specified as well as intrinsically defined paths on the surface.

In the analysis of a structural problem by the finite element method

we can compute only approximate points along a path on the solution surface

of some discretized form of the original problem. Then -- in line with the

earlier stated objectives of a practical computation -- we are faced with the

need for assessing and controlling the errors along an entire segment of
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such a path. In addition, since we are interested in specific features

of the equilibrium surface, such as, the location of turning points,

bifurcation points, stability boundaries, etc., we require also estimators

of the error between such specific points and their computed approximations.

Some a priori estimates of this type have been given recently in [16], [17],

[18]. But, as in the linear case, we require, of course, computable and

reliable a posteriori estimators which can then form the basis of adaptive

procedures for computing with a prescribed accuracy the desired segments

of solution paths on the equilibrium surface.

In the first part of this paper we consider a strongly nonlinear, one-

dimensional rod-problem and show for it that effective a posteriori error

estimates and adaptive procedures can be constructed and successfully

integrated into a general continuation process for tracing paths on the

equilibrium surface. In addition, we introduce error estimators for the

computed location of turning points along such paths. Finally, various

numerical results show the effectivity of all these approaches and ideas.

The results given here are as yet restricted in their applicability

but should be capable of generalization to broader classes of problems. In

order to illustrate where such generalizations should lead us we present

in Part II of this paper an outlook on some further results for linear

problems of the type we would hope to achieve ultimately also for the non-

linear case. In particular, this includes the design and application of an

adaptive finite element solver for certain two-dimensional elliptic problems

and the extension of the use of error estimators and adaptive procedures to some

parabolic problems. For further summnaries of the specific results presented

in this paper we refer to the outlines included at the beginning of each one

of the two parts.
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Part 1: Nonlinear Problems

In this part, consisting of sections 2 to 9 of this paper, we discuss

various aspects of the computational solution of a class of nonlinear

problems in structural mechanics. More specifically, we consider as a

model problem a planar, elastic rod involving both material as well as

geometrical nonlinearities. But, as far as possible, the discussion is

kept general and applicable to broader classes of problems. As indicated

in the introduction, for nonlinear problems of this type we are interested

in analyzing the shape and features of the equilibrium surface. Accordingly,

we include here some general remarks about such surfaces and about the related

computational problems involving solution paths, bifurcation and turning

points, stability boundaries, etc.. Then a general continuation process is

summarized and some of its extensions for determining limit points and

tracing stability paths are discussed. In line with the comments in the

introduction we introduce estimators for the error along the solution paths

and of the computed critical values. Experimental results for the model

problem show the effectivity of these estimators and of the adaptive pro-

cedures based upon them. Finally we discuss some aspects relating to the

occurrence of so-called spurious solutions which occur frequently in dis-

cretized nonlinear problems.
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2. A Model Problem

As a model problem we consider the planar deformations of a non-linearly

elastic rod. More specifically, large deformations as well as material non-

linearities are allowed. A comprehensive treatment of the global behavior

of such rods was given in [1]. These rods can suffer not only flexure but

also compression (or extension) and shear.

The basic configuration of the rod is sketched in Figure 1. We restrict

ourselves to the case of a symmetric shape where it suffices to consider

only one half of the rod, say, the left half in our picture. Then the con-

figuration of the rod is described by two functions

(2.1) r: [0,11 - R2, q: [0,1] - R2, I11(s)i 2  = 1

where r defines the axis of the deformed rod and _ the direction of

the cross-section (expressing the effect of the shear stresses). The parameter

s represents the arc-length of the rod-axis in thp straight reference con-

figuration. Let el, e2 be the global basis vectors as shown in the figure and

2u the angle between q and e . Then, with

/Cos u sin u\
(2.2) U(u)=

\sin u COS U)I

we define the local coordinate system by

(2.3) P(s) = U(u(s)) T el , (s) = U(u(s)) e

and the strains .;, n by
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(2.4) r'(s) = U(u(s))T ( + (s))

Let f(s) and m(s) denote the resultant force and moment, respectively,

in the cross-section at the point s. Since the load is constant, the

equilibrium equations have the form

(2.5) f' = 0, m' + r' x f = 0

where primes denote differentiation with respect to s. Hence, we have

(2.6) f(s) m ( ), m(s) = M(s)(e I  e2)
V

and

v)T r(s) ' (s) (x]T( 1 +  (s)

(2.7) 0 = M'(s) + (vT r'(s) (s) + [U(u(s)) V T

(i(s)

We introduce the constitutive equations

M(s) = a(u'(s)),

(2.8) s(s) = b((el)T U(u(s)) (- )) = b(-x cos u(s) + v sin u(s)),

n(s) = c((el) T  U(u(s)) (V)) : c(v cos u(s) + x sin u(s)),

where a, b, and c are given real functions. With the abbreviation
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b~uX~v = X sin u + vcos u)(1 + b(-X cos u +v sin u))
(2.9)

+ (N cos u - v sin u) c(x sin u + v cos u)

our equation (2.7) now assumes the form

(2.10) a(u') + b(u,x,v) : 0.

The fixed left endpoint and the symmetry requirement result in the homo-

geneous boundary conditions

(2.11) u(O) = u( ) = 0.

Note that for a(t) - aot and b(t) =_ c(t) - 0 the problem reduces to

the classical Bernoulli-Euler problem

(2.12) a0u" + X sin u + v cos u = 0, u(O) = u(l) = 0.

Equation (2.10) is strongly nonlinear when a(t) a t and only mildly
00

nonlinear when a(t) = a0 t as in (2.12). Mildly nonlinear problems of

this form have been studied by many authors. For some recent results about

finite element approximations for such equations see, for instance, [16], [171, [18]

and the references given there.

In order to define the specific constitutive equations used in our

numerical experiments let

t for t < 0

(2.13) g (t) = arctan 1t g2 (t) 1: t
91 2t + 2t 2 for t > 0
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Then the three cases of (2.8) considered in this paper are as follows:

(i) (Strongly nonlinear) a(t) = gl(t), b(t) = g2 (t), c(t) = g1(t)

(2.14) (ii) (Mildly nonlinear) a(t) = I t, b(t) = g2(t), c(t) = 1(t)

(iii) (Classical Euler Rod) a(t) = 1

Note that from (2.4) and (2.8) it follows that the shape of the axis

of the rod is specified by

r(s) = 0 U(u()) T u(c) ) do.
0 c(x sin u(a) + v cos u(o))

Moreover, by (2.7) the moment balance is given by

(2.16) M(O) - M(1) = (V)T r(1).

We refer to [1] for further theoretical results about this problem.



3. Remarks on Equilibrium Surfaces

Our model problem (2.10)/(2.11) involves the two parameters X, V

representing the components of the resultant force. For any fixed x, V

a solution u = u(s) of the boundary value problem defines an equilibrium

configuration of the rod. For practical applications it is rarely

sufficient to determine only the equilibria for a few given loads. Instead

we are interested usually in the changes of the equilibrium position under

specific changes of the load.

Frequently in structural mechanics for a fixed direction the load-

intensity is used as a parameter. For example, in our case we may consider

the family of loads -Ae1 acting in the direction of the axis of the rod

in its undeformed configuration. If A varies say from X = 0 to some

maximal value we obtain in this way a curve of equilibria of the rod. Often

this curve is parametrized in terms of x. But at turning points this

parametrization breaks down and hence it is usually better to consider the

curve in the form A = X(t), u = u(t)(s) with another, more suitable

parameter t. Clearly, for different load directions or starting points we

obtain a different curve.

In our case the problem depends on the two parameters A and v.

Accordingly, it turns out that all these curves form a two-dimensional

surface in (A,v,u)-space, the so-called equilibrium surface of the problem.

In general, this surface has a complicated shape but its consideration

provides considerable insight into the equilibrium behavior of our structure.

In order to illustrate these concepts it may be helpful to consider

for a moment a particular frame-work model of our rod (see also [301, p. 291).

Two rigid rods of length 1 each are flexibly jointed as shown in Figure 2

and a linear spring with spring-constant k is trying to hold the structure
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in its straight reference configuration. For simplicity, let k = 1/2.

Any equilibrium position is characterized by the value of the angle y,

and it is easily seen that the equilibrium equation has the form

(3.1) y -Asin y - I _ o y=0

Hence, the equilibrium surface here is a two-dimensional surface in the

three-dimensional space with coordinates x, v, y. It is a ruled surface

for which the generators have constant values of y. Figure 3 shows level

lines of a projection of part of this surface in the direction of the y-axis.

In addition, Figures 4 and 5 illustrate the cross sections of the surface with

planes x = const and v = const, respectively. The latter two figures show

clearly that the point X = 1, v = 0, y = 0 is special. More precisely,

we have here a bifurcation point where two equilibrium curves for the load

direction (1,0) Tare intersecting. The particular shape of the surface

near this point represents a so-called cusp-catastrophe. The reason for

this name is obvious from Figure 3.

Evidently, the equilibrium surface characterizes much better the complete

behavior of the framework than the usual traces of the equilibrium-curves

corresponding to fixed load directions. Furthermore, the surface may be

partitioned into subsets of stable and instable equilibria. As usual, an

equilibrium-solution is called (locally) stable if it represents a local

minimum of the total energy. In our case, it is readily seen that instability

occurs when

(3.2) 1 - X cos y + 2 v sin y < 0.

In Figure 3 the upper part of the visible surface consists of stable equilibria.
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The boundary of the stability region is the envelope of the generators.

This stability boundary is shown as a dashed line in Figure 4. It con-

sists of the turning points with respect to the load parameter X. on the

curves for constant values of v. These points represent the buckling

points of the structure for the particular values of v. Thus, at one

glance the surface provides us with information about the stable equilibria,

buckling loads, etc. for our framework.

This indicates that for a deeper understanding of the behavior of a

structure we should analyze the form of the equilibrium surface. Of course,

the choice of the parameters X and v entering into the definition of our

surface is basically arbitrary albeit natural. Practical considerations

show that the load-component x is essential for the study of the buckling

behavior of the framework. At the same time it is necessary to introduce

one or several parameters describing possible perturbations. There are

theoretical reasons to consider a particular minimal number of such per-

turbation parameters, but we shall not enter into that question here.

In view of these observations the aim of our analysis is to determine

the form of the equilibrium surface. In our simple example this is easy

since no discretization is involved. But in general, we can compute only

points which are approximately on the solution surface of a discretization

of the original problem. In line with the earlier stated requirements for

any practical computation this raises the question of assessing the errors

commiitted here.

Analogous to the framework the equilibrium surface of the rod-problem

(2.10) is a two-dimensional surface in the three-dimensional space with

coordinates X., v, u. Suppose that u(x v) and 6(x,v) denote

the exact solution and the computed, app ro ximate so lutio n, respectively, f or
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given parameter values A, v. An obvious possibility for the error assess-

ment then is the requirement that flu(A,v) - u(X,V)11< E. However, this

is reasonable only if both u and u exist for the particular parameter

values. This is by no means guaranteed as Figure 6 shows which provides

a sketch of possible curves u(.,v ) and u(.,v ). For A < AT both

u and u exist but for A > xT there is nu value of u(A, 0) which

can be compared with the computed value u(,v 0o). Hence, it will be

necessary to consider different measures of the error between the exact

and computed solutions. A possibility is to ask for an estimate which

guarantees that for any computed jU(A,v) there exists an exact solution

u(A,\) with

(3.3) I+ IV - "V1 + 11 (X,,',) - u(5,";v E:

and suitable exponents a, . Clearly, this avoids the difficulty with

the earlier type of estimate. In addition to estimates such as (3.3) other

more specific error-assessments are often desired. For example, it is

frequently of considerable practical interest to measure the error IAT - ATI

in the parameter values corresponding to the turning points of the exact

and computed solutions.

In connection with this discussion it should be noted also that the

equilibrium surface of the discretized problem may consist of more

connected components than the surface of the exact problem. In other words,

there may be numerical solutions which do not approximate exact solutions.

Such spurious solutions have been observed in many contexts (see eg. [20], [281

and the references given there). From our viewpoing the question then is

to identify the segments of solution paths on the equilibrium surface of the

discrete problem for which the error estimates are below an acceptable threshold.
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4. A Finite Element Approximation of the Rod Proolem

We return again to the rod problem (2.10)/(2.11). The finite element

solution of this boundary value problem is based on the standard variational

form

(4.1) { [-a(u')v' + b(u,x,\,)v]ds = 0
f0

where v varies over a given space of test functions.

A mixed finite element method was used to approximate the solutions of

(4.1). More specifically, let

(4.2) A: 0 = s0 < SI < s2 < ... < s = , n = n(A)

be a given partition of the interval [0,l]. Then on the i-th interval

I i = [Si l, 1 < i < n, of A the solution is approximated by

(4.3) ui(s) = .1 yi £Pj(ti(s)), V s Ii  1 < i < n,j=O J' - -

where p are the standard Legendre polynomials on [-I,+l]

and

(4.4) T((S) - 1(s + S)) hi = s i l 1 < i < n.(4.4) (s 2 =-I i ' " S i-l' - -

At the interior nodes of 2 the functions and their derivatives up to order

d-I are to match continuously (2d < p~-l). Thus, together with the two
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boundary conditions at sO  and sn we have to add d(n-l) + 2 constraints

to (3.1). In order to take account of the corresponding constraints for

the test functions an equal number of Lagrange multipliers have to be intro-

duced. Hence, altogether, we have (p+l)n + d(n-l) + 2 variables. In

the standard finite element method the use of the corresponding elements

results in

(4.5) (p+l)n - d(n-l) - 2,

degrees of freedom. This number is used later in all estimations of the

total work.

The mixed method of this form was selected for our example computations

because it allows for a flexible use of elements of various degree and

smoothness. With this it was possible to assess among other points the

amount of work for a fixed accuracy corresponding to different degrees of

approximation and varying smoothness. High order elements are used fre-

quently, for instance, in the P-version of the finite element method, (see

eq. [14], [15], [41]).
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5. A Continuation Method

In structural mechanics continuation methods are usually viewed in a

narrow sense as methods for following numerically a specific load curve

parametrized by a load intensity. As we discussed in section 3 the solution

set of structural problems generally constitutes some surface or manifold.

For example, for our rod-problem (2.10)/(2.11) the equilibrium surface is a

two-dimensional surface in (X,v,u)-space. For a thorough understanding of

the equilibrium behavior of a non-linear structure we are interested in

determining the principal features of the equilibrium surface, as, for

example, the location of critical boundaries and bifurcation points where

stability is lost, etc..

For a numerical analysis of a given equilibrium surface we need to

consider continuation methods in a broader sense as a collection of numerical

procedures for accomplishing tasks of the following type:

(i) Follow numerically any curve on the surface specified
by a particular combination of parameter values.

(ii) Determine on such a curve the critical points where
stability may be lost.

(iii) From any such critical point follow a path in the
critical boundary.

(iv) On any curve specified by (i) determine the location of
bifurcation points and the paths intersecting at that
point.

Methods for these and related tasks have been developed by various

authors in recent years (see eg. [23], [24], [27], [29], [31], [32], [34], [39],

[40] and the references given there). We shall not go into details here but

sketch only some of the principal features of these methods as they apply

in the present setting.
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Generally, a (finite-element) discretization of a structural problem

leads to a finite dimensional non-linear equation of the form

(5.2) F(y,p) = 0

where y E Rn  is a vector of state variables (eg., deformations), p . Rm  a

vector of parameters, and F: Rn m - Rn a given function. For ease of

discussion we shall assume here that rm = 2. The set

(5.3) E(F) = {(y,p) e Rn  R F(yp) 0}

of all solutions of (5.2) is the equilibrium surface of our discretized

problem.

Let DF(y,p) denote the derivative of F; that is, the n x (n+2)-

(Jacobian) matrix of all partial derivatives of F. We assume that the

so-called regularity set

(5.4) R(F) = {(y,p) E Rn x R21 rank DF(y,p) = nj

is not empty. For example, in the case of the framework of Figure 2 we have

y £ Rl , p = (A,v)T £ R2 and

(5.5) DF(y,p) = (4k - 2A cos y + v sin y, -2 sin y, -cos y).

The three partial derivatives in this I x 3 matrix DF(y,p) can never

be zero at the same time. Hence, the rank of that matrix is always one and
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the regularity set R(F) is the entire space R3.

On the equilibrium surface (5.3) we may define a curve by specifying

some relation between the two components x, v of the parameter vector

T 2
p = (X',V) R2 . For example, suppose that we fix a linear relation of

the form

(5.6) qT(p-pO) _ ql(A-xo) + q2 (v-v 0 ) = 0

where q = (qlq 2)T is a given non-zero vector and pO = (xo,vo) a

specified vector of parameter values. Hence, we are now interested in the

solutions of (5.2) for which (5.6) holds; in other words, we are considering

the expanded equation

F(y,p)
(5.7) F(y,p) 0.

(qT(p-po)

In our examples the parameter vector p represents a load. Hence,

p0  is a reference load, (5.6) defines a load direction and the solutions

of (5.7) are the equilibria of the structure in this particular load

direction.

The derivative of F is the (n+l) x (n+2) matrix

(5.8) 
DF(y,p) = yF(y,p) Dp(Y P)

and it is readily seen that the regularity set R(F) of F is a subset

of R(F); that is
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(5.9) R(F) C R(F).

It is important to note that in general there are points in R(F) which do

not belong to R(F). For example, for the framework of Figure 2 suppose

that we are interested in tracing a curve defined by v = v0 . Hence, in

(5.6) we use q = (0 ,1 )T PO = (o"Vo)T, and (5.8) has the form

(5.10) D-(yp) : ( 2 cos y + v sin y -2 sin y -Cos Y

0 0 1

The matrix has rank two everywhere in R3 except on the straight lines de-

ifined by X = (-l) i, y = ir, i = 0,+l,+2,... and variable v. Thus,

R(F) is no longer equal to R3 as was the case with R(F).

The intersection of the equilibrium surface E(F) with the straight

lines where DF(y,p) has only rank one are the points with the coordinates

X = (-) i , v = 2(-l) i+1r, y = i7, i = 0,+I,+2,... . In the region

where lyl < i/2 the only such point is the bifurcation point X = 1, v = 0,

y - 0 of Figure 4. Note that this point became a singular point only by

considering the family of curves v = v on the equilibrium surface.

Different families of curves generate different singular points. For instance,

if we trace the family of curves A = xo for given Xo, then in our strip

IYj < n/2 the only points not in R(F) have the coordinates X = 7/2,

y = + i7/2, v = -2. This effect is clearly visible in Figures 4 and 5.

For a fixed vector q the points of the regularity set R(F) are of

principal interest for our continuation processes, since, under simple

conditions about F, there exists a unique solution curve of (5.7) through
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any such point. More precisely we have the following existence result (see

[32]):

Theorem: Let F: Rn x R2 - Rn be continuously differentiable and DF locally
0 R2

Lipschitzian. With given q,p c R form the expanded mapping F of (5.7).

Then for any (y0 ,pO) E R(F) there exists a unique, continuously differentiable

solution y: J C R Rn, p: J CR R such that

F(y(s),p(s)) 0, Vs £ J, y(O) yO, p(O) : p

(5.11)

(y(s),p(s)) E R(F), j (y'(s),p'(s))1j2 : 1, Vs e a

where the open interval J R1  is maximal under set-inclusion. Moreover,

if s is a finite endpoint of J then for s - s, s E J either the

points (y(s),u(s)) tend to the boundary of R(F) or jjy(s),u(s))]1 2

goes to infinity.

The effect of this theorem is clearly visible in Figure 4. Through any

point in the shown region, except the bifurcation point X = 1, v = 0, y = 0,

there is exactly one solution curve which terminates only at a bifurcation

point. Note that at A = 7/2, y = + 7/2 the v = v curves in R3  do not

intersect although in the figure this appears to happen.

For the discussion of a continuation process for computing a curve (5.11),

it is useful to use the abbreviation x = (y,u) for the vectors (y,u) E Rn+2 ,

It can be shown that on the regularity set R(F) there exists a unique tangent

mapping T such that

(5.12) T: R(F)- Rn+2, DF(x)Tx = 0, IjTxj 2 1 1, det (T) > 0.
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In other words, for any point x E R(F) the vector Tx of length one is

tangent to the unique solution curve through that point. The determinant

condition in (5.12) was introduced to fix the orientation of that tangent

direction.

Most modern numerical continuation processes for tracing a curve (5.11)

are of the predictor-corrector type. But the methods differ in the choice

of the parametrization of the curve. We shall discuss here a locally para-

metrized process of the form presented in [32], [34].

Let x°,x l...,xk , k > 0, be the approximate points along the curve
k+l

which have been computed so far. The computation of the next point x

has schematically the following form:

k k1. At x compute the tangent vector Tx

2. Choose the index i = it, 1 < i < n+2, of the variable x
which is to serve as th current -continuation parameter.

3. Choose a steplength tk+l along the Euler line xk + tTx k

(5.13) 4. Compute the predicted point xpred = xk + tk+l Txk and the

corresponding "corrector-constant" ¥k"

5. With xpred as starting point apply Newton's method to the
corrector equation

FxGx : ( -•: O
(e k)T(x-xPred Yk 0

If "no convergence" then replace tk+l by 1 1 and go to 4.

.tk+l Tk

If "convergence" then use the last iterate as the next continuation

point xk+ 1•

For the computation of the tangent vector Txk note that
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(5.14) det ((ei)T : [(e)i T Tx k  det (Tx) i 1,...,n+2

where e ,. n., 2  are the natural basis vectors of R. Hence, with

any index i such that (ei ) Txk  0 the tangent vector may be computed

as follows

SDF(xk v en+2

(e) /

(5.15)

k v DF(x) ) T k

Txk = a 1--12 a = [sign det (e i)T) ]/[sign (ei  Txk

For k > 1 we use the index i = ik-l of the continuation variable during

the previous step while for k = 0 the index of the original, user-provided

continuation variable is taken.

In line with (5.14) the index i = ik  of the variable xi which is

to serve as the current continuation variable is chosen such that

(5.16) I(eik T Txk= max I(ei)T TxkI.
i=l ,...,n+2

This represents the variable for which the basis vector ei  forms the

smallest angle with the tangent Tx k. Note that -- unless the step from

k-l to xk was unreasonably large -- the choice of i = ik-l in (5.15)

should guarantee that the matrix indeed is nonsingular.

In order to determine a steplength we proceed as in the case of ODE-
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solvers and introduce the quadratic polynomial

(5.16) q(t) = xk + tTxk + t2 wk

with

(5.17) wk (Tx k (xkxkI h k k-I

for which

(5.18) q(O) = xk q'(O) = Txk, q(-h k) : xk
'l

The distance between xpred and the curve is to be smaller than some tolerance

Sk+l > 0. Asymptotically for sufficiently small hk and tk+l this re-

quirement may be approximated by

(5.19) ,x pred - q(tk+l)112 : k+l

whence

£k+l

(5.20) tk+ 1  <

The polynomial (5.16) is numerically ill-defined when the angle

(5.21) Ok= arc cos [(Txk)
T (I (xk - xk-l))] [0,

k hk
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is small, that is, when the path is fairly straight. This makes it

advisable not to attempt to use q(tk+ l) in place of xpred as the

predicted point. The norm of wk may be evaluated easily in the form

k 2k(5.22) 11w 112 = k 1sin T

The choice of the "corrector-constant" Yk in line 4 of (5.13)

defines the point on the path (5.11) which is to be approximated by the

corrector iteration. More specifically, suppose that xk  is an approxi-

mation of the point x(sk) on the curve, then for given Yk and sufficiently

small t and As the equation

1k+l T k k
(5.23) (e ) (x(sk+As) - (x +tTx)) =k

defines a one-to-one correspondence between t and As. Evidently, the

choice t = As underlying the inequality (5.19) is a natural but by no

means required goal. If we replace x(s) in (5.23) by q(t) then

As = tk+l implies the use of the corrector constant

(5.24) k t+l "e1 )T Txk _ 1 (ekT (xk xk)]-l
- hk ( T k

Obviously, Yk should be evaluated in double-precision to reduce the possible

effect of subtractive cancellation when the curve is nearly straight.

For the definition of the steplength this leaves the choice of the

tolerance Ek+l in (5.20). A study of some aspects of this question has

been given in [19]. For our discussion here it suffices to mention only a
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simple but rather effective technique.

For any real numbers a < b we define the piecewise linear function

a if t< a

(5.25) Li(t;a,b) = t if a< t < b

b if t> b

The steplength calculation uses as input the angle ak of (5.21), the pre-

diction error

(5.26) 6k 
= II(xk-l+tk Txkl) - Xk 12

at the last step, and the last step hk defined in (5.17). With these

quantities the calculation is essentially based on (5.20) and proceeds as

follows:

1. If tk < c min then e:= <, go to 4 [straight line case]

l
else if 0 k > max then e:= , go to 4

[hairpin case]

2. 'k ; 6 max [adjustment of relative tolerance]

(5.27)

3( e . 1 2) [adjustment of el

21 s in C k K

4. tk+l = (ehk9 tmin t max ) [adjustment of stepJ

. ... . .. ... . . . . .. m a x . . . . . . . . . . n l i i . ..
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Here 0 < Lmin < cmax < r are bounds for the angle ak and K is the

maximally allowable step-increase, that is, we want to ensure that the

step-factor e is bounded by

(5.28) - < e < K.
K -

In line with this the tolerance bounds in line 2.of (5.27) are defined by

(52)6 2 sn1 2K 2 2 sin .1
(5.29) 6min K sin ' max' 6max 2  min'

K

The condition 6min < 6max places some restriction on the choice of min'

Lmax and K. Experience has shown that amin : 0.05, Lmax : /2, and

K = 3 are effective choices for a large range of problems. The actual

step is enforced to fall between the bounds 0 < tmin < tmax ' Here tmin

depends on the accuracy of the machine and tmax reflects the desired

density of points along the curve.

Line 5. of (5.13) requires some provisions for monitoring the con-

vergence of the corrector iteration. For Newton-type methods it has been

found satisfactory to declare non-convergence if either one of the three

conditions is true

(i) IIGxk' k for some j> 1

(5.30) (ii) ii xkj- xkj-ll ,1Ix kj-l-x kj-211 , for some j > 2

(iii) J j Jmax
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where ixk j } denotes the sequence of corrector iterates, qp is a suit-

able constant, say ¢ = 1.05, and jmax an integer, say, jmax = 5. On

the other hand, the iterate xk j  is accepted as the next point xk+ l  if

(5.31) (IIGxk'J < i) and (flx kJ-x kj-l < 2 + E:3 1xk ' j I), for some j> 1

with given tolerances ,,e2' E 3 which depend on the machine and the problem.

As stated in (5.13), in the case of non-convergence the predictor step

is halved and the corrector is restarted with the corresponding value (5.24)

of the corrector-constant Yk" Of course, here it is required that

kl> tm else some user dependent action is required. On the other
2 k+l- tminkl
hand, if convergence is declared with xk+l = xk ' j  as the last iterate

then a control program has to decide whether a new predictor/corrector step

is needed or not.

The algorithm described here has been used extensively and with excellent

success on a wide range of problems. In particular, it is well suited for

the task (i) of (5.1). For practical use it is desirable to incorporate

special features which allow, for instance, for the detection and computation

of any target point on the curve where a specific variable has a given value,

or for the detection and computation of a limit point. The latter feature

will be discussed briefly in the next section.
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6. Determination of Limit Points and Critical Boundaries

In this section we discuss briefly some of the algorithmic aspects

relating to the tasks (ii) and (iii) of (5.1), that is, to the determination

of critical points on a continuation curve and the trace of a path in the

critical boundary. As before let (5.2) be the given system of non-linear

equations which defines the equilibrium surface E(F) of (5.3) for our dis-

cretized problem.

Suppose that there exists a total energy-functional r: Rn x R2 _ Rl

with 0 y(yp)T = F(yp), V y e Rn, p e R2 . Then an equilibrium

(yO,pO) e E(F) is stable if Tr(y,pO) has a proper local minimum at y = yO

and hence if Dy F(y0 ,p°) is negative definite. Let

(6.1) C(F) = {(y,p) E Rn x RPI D yF(y,p) is singular};

then the so-called critical boundary C(F) ( E(F) contains the (relative)

boundary of the set of stable equilibria on the equilibrium surface E(F),

although the two sets are not necessarily equal. The tasks (5.1) (ii) and

(iii) concern the computation of points and curves in the critical boundary

C(F) 0 E(F). Note that this set is also well-defined if there is no total

energy functional 7T. But then Dy F(y,p) is non-symmetric and stability

may be lost at points not in C(F)() E(F).

As in the previous section we consider curves in E(F)(f R(F) defined

by an augmented equation (5.7). As we saw before the regularity set R(F)

of the expanded function F is contained in R(F). More specifically, it

can be shown that

(6.2) R(F) LR(F)\C(F)] U L(F,q)
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where

(6.3) L(F,q) = {(y,p) e Rn x R21 dim ker Dy F(y,p) = 1, Dp F(y,p) rge D yF(y,p)}.

In other words, either a point (y,p) e R(F) on our curve does not belong

to C(F) or it is in the set L(F,q). As the notation already indicates

this set L(F,q) depends only on F and the vector q used in (5.6) to

specify the curve. Moreover, one can show that

(6.4) L(F,q) = {x E R(F)i (eJ)TTx 0 0, j = n+l,n+2}.

In other words, the points (y,p) E L(F,q) on our curve are exactly those

points of R(F) where the tangent of the curve is orthogonal to the 2-

dimensional subspace of the parameter variables. Thus, in standard termi-

nology, the points of L(F,q) are the limit points of F in R(F) or more

precisely the limit points of F with respect to the direction q.

Suppose now that our continuation process of Section 5 is applied to

trace the curve defined by (5.7) and a specific starting point

xo = (yO,pO) E R(F) for which Fx° = 0. As shown in [32] the computation

will continue as long as the curve remains in R(F). In order to detect

on the curve a limit point of F we have to look for points of L(F,q).

For this it is only necessary to monitor one component (ef)T Tx of the

tangent vector Tx along the curve, provided the index e, n+l < e < n+2,

was chosen such that the vector q has a non-zero £-th component; that is,

(6.5) qT e # 0.



36

This follows readily from the characterization of L(F,q) and the form

of F.

If our starting point x0 s R(F) represented a stable equilibrium

then the first limit point encountered on our path indicates a point where

stability may be expected to be lost. For structural problems this is

typically a point where buckling may occur. Let x = x(s) e R(F), s > 0,

x(O) = x°, be the segment of the exact curve which we are tracing. Then the

first limit point is the first zero s = s* > 0 of the real function

(6.6) c(s) = (eZ)T Tx(s), s > 0,

where the index t, n+l < Z < n+2, was chosen such that (6.5) holds.

If there exists a total potential 7 and changes signs at s = s*

then at that point of the curve one eigenvalue of D yF(x(s*)) becomes

positive and stability is certainly lost. Limit points where ¢ changes

sign are called simple limit points. They may be characterized in terms

of the behavior of the second derivative D yyF(x(s*)) but there is no need

to discuss this here (see eg. [35]). We note also that zeroes of where

the sign does not change are numerically ill-conditioned and cannot be

detected easily. Accordingly, in practice, interest centers almost exclusively

on simple limit points.

The continuation process produces a sequence of points xo,xl ,..

approximating our curve and we expect to encounter a first pair of points

xkl , xk where

(6.7) sign (eZ)T Tx sign (e )Tx
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This signals the nearness of a simple limit point x* e L(F,q) and

the task (5.1) (ii) requires a closer computation of x*. For this

several algorithms are available (see the references given in [35]). A

very simple but reliable approach is to apply a root-finder to the function

p. More precisely, we consider the secant line

k-l + xk
(6.8) z(t) = (l-t)x + txk, 0 < t < 1

between xk-l and xk and denote by i the index of the maximal component

in modulus of xk - xk-I  By construction of our continuation process

Newton's method applied to the system

Fx
(6.9) : 0

eiT(x-z(t)

should converge to a point on the curve. Let x(t) denote the accepted,

final Newton-iterate corresponding to the starting point z(t), 0 < t < 1.

Then the real function )t) = (e ) Tx(t), 0 < t < 1, is well-defined and,

by (6.7), it has different signs for t = 0 and t = 1. Hence, a standard

root-finder can be applied to 4. In particular, experience has shown that

the code given in [21] works here very well.

In structural problems it is rarely sufficient to determine just one

limit point. If, say, the structure is expected to buckle at that point

then we are interested in determining the change of that buckling point

with a variation of the parameters. The standard computational approach

for this is to repeat the entire process, that is, to define a neighboring

curve by changing the starting point and the augmenting equation (5.7) and
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to determine on this new curve the first simple limit point. Obviously,

this may be a very time-consuming method. Moreover, it is usually

extremely difficult to construct neighboring curves which lead to a

sequence of reasonably closely spaced limit points.

This raises the question about the feasibility of methods for a

direct trace of a curve in the critical boundary C(F)() R(F) through our

first simple limit point x*. Several such methods have been discussed

in [35] and it would lead too far to go into details here. Briefly, one

of the processes works with two augmented systems of the form

/F(y,p)

(6.10) G ((ye ) T)(= 5) = 0, t =l12

where q 2= q e R 2and q IE: R 2is orthogonal to q. In general, these

systems define two families of curves on the equilibrium surface. Then the

concept of the process is to start at the first limit point x* with a trace

of the curve through x* defined by G 1. After one or at most a few con-

tinuation steps we switch to the curve defined by G2 and determine on it

the first simple limit point which represents the next point on our desired

curve in the critical boundary (see Figure 7). A repetitive application of

this concept requires attention to some technical details for which we refer

to the cited article [35].

As an example of the application of this process we consider a clamped,

thin, shallow, circular arch which has been used as a test case by various

authors (see eg. [25], [26], [43]). Let U and W be the radial and axial

displacements, R the arch-radius, A the cross-sectional area, h the

thickness, and E Young's modulus. With the dimensionless displacements
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u = U/n, w = W/h, the total potential energy -- non-dimensionlized by

dividing by EAR(h/R)2 -- is given by

8 a 0~ d 2u 2 d-a 0 u6(6.11) w ( - u) +1 du 2 2d + , -2)2d-] dw
-- + 2 R de +2 f de 2 pd

-60  -eo  -eo

Here p = p(e) is the dimensionless radial load and a1 'a2  are dimensionless

constants. Each end is assumed to be pinned, that is, we have the boundary

condi tions

(6.12) u(+ eo) : 0, w(+ eo) 0, d2u + 0.
de

The finite element approximation introduced in [43] was applied. More

specifically, we used a uniform mesh with eight rlements, e = 150 and

the constants a1 = 3.8716 x 10-6 , a2 = 8.2752 x 10-2  corresponding to

the data in [26]. The following four load functions p = p(U,v) were chosen:

f p(l-v) + 4vv, for elements 4 and 5(1) p(u,v) S
( 1 -V), otherwise

( (l-v) + 4pv, for elements 2 and 3
(2) p~u,v)

S(l -v), otherwise
(6.13)

I u(l-v) + 8pv, for element 4
(3) p(,,v)

v (1-v), otherwise

f(1-v) + 8uv, for element 2

(4) p~v
4 P ) (-v), otherwise
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Hence, in all case the average load is .

If the boundary conditions are disregarded there are 45 displacement

variables and two control parameters. In order to simplify the comparison

for different boundary conditions, all variables were always numbered con-

secutively from 1 to 47. Thus, x 21  denotes the radial displacement of

the center point. Of course, once the boundary conditions are taken into

account there remain only 39 displacement variables.

For each load function a basic curve on the equilibrium surface was

defined by fixing a value of v. More specifically, for the symmnetric load

(6.13) (1) the value v = 0 was used while in all other cases v = 0.005

was taken. These curves were followed numerically until a first limit point

was detected. From this limit point the corresponding curve in the critical

boundary was traced by the method sketched above. The results are shown

in Figure 8. The curves in the critical boundary for the load functions

(6.13) are labeled (1) through (4). They represent the location of the

buckling points of the arch under the chosen load regimes. Note the con-

siderable influence of the location of the load maxima for equal average

loads. The curves (2), (3), (4) for the asymmnetric loads emanate from the

bifurcation point on the basic curve defined by v = 0. On these curves

the structure buckles asymmnetrically. On the other hand, for the symmnetric

load (1) the "critical curve" intersects at the limit point of the curve

for v = 0, and represents points where the structure undergoes symmuetric

"snap through" buckling. It is easily seen that this is an instable

situation which, in practice, is not realizable except under very controlled

conditions.

The example shows that this approach can provide a wealth of information

about the buckling behavior of a structure. Moreover, it turns out that the
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computational work for tracing one of the curves in the critical boundary

is only mildly larger than that for tracing one of the basic curves. Thus,

this type of analysis of a structure is certa'nly practically feasible.



44

7. A Posteriori Error Estimates and Adaptive Approaches

In Section 4 we introduced a particular finite element formulation

for our model problem (2.10)/(2.11). This formulation is rather flexible

and leaves the user considerable freedom in the choice of various data-items,

including, in particular, the mesh (4.2), degree p of the elements and

smoothness-index d of the solution. Now we face the following two tasks:

Mi Construct a Posteriori error estimates which -- for
given input-data-items -- characterize accurately and
reliably the error caused by the finite-element
solution as measured in some specified norm.

(ii) Design an adaptive procedure for selecting the controlling
data-items defining the solution so as to achieve an
acceptable solution with the prescribed accuracy.

These two tasks are closely tied together. Without reliable error

estimators it is impossible to design effective adaptive procedures for

solving the problem within the prescribed error-range. At the same time,

it can be shown theoretically and practically that effective error estimators

exhibit increasing accuracy whenever a proper adaptive approach is used.

The mentioned flexibility of our finite-element formulation for the

model problem incorporates both the H-version and the P-version of the method.

In other words, we may fix the degree of the elements and achieve the desired

accuracy by refining the mesh, or, alternately, we may fix the mesh and

increase the degree of the elements to meet the accuracy requirement. For

some details and comparisons of these two versions see [141, [151, [411.

In this paper we shall concentrate on the H-version for which the approaches

presented here are closely related to those analyzed for the linear case in

We begin with a summary of the definition of the error-estimators for
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the case d= 1 of C0-element of degree p. The corresponding proofs

will be given elsewhere.

For given parameter values X, v we denote by U(s) = u(X,v)(s)

the exact solution of our problem. Moreover, for a specified mesh A

of (4.2) and fixed degree p let u(s) = u(A,p,X,v)(s), 0 < s < 1, be

the computed finite element solution. Then the error estimator is obtained

as follows:

(i) On every sub-interval I., i = 1,...,n, compute the
finite element approximation

p+l
(7.1) wi(s) = I zij j(i(s)), Vs e i,

i=O

of the original problem subject to the boundary conditions

(7.2) wi(s ) = u(A1pX,'V)(sz), f = i-li.

(Here the notation of section 3 is used). Then, for each
i, 1 < i < n, define

(7.3) ai= [f (wi(s) -u(s))2ds1
2

(ii) On every sub-interval Ii compute the residual

(7.4) ri(s) = a(iu'(s))' + b(u(s), ,v)

and the quantity
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(7.5) Pi c h [f ri(s) 2 ds] I/2

where c is a fixed constant (see [13]). For small
h. we have p. << a. and hence this step (ii) can
often be omitted.

(iii) With the quantities (7.3) and (7.5) the error indicator
of the ith sub-interval is defined by

(7.6) =I [a2 + pi] , i =

(iv) Now the quantity

n 2 /2

(7.7) n(i) : [ ni 21i=l1

is the desired error estimator of the computed solution.

The error estimator e of (7.7) approximates the error

(7.8) 11u(X,v) - u(A,p,xv)I H(I) 1 [ O (u'(s) - '(s))2ds] /2

of the computed finite element solution in the HE-norm. More precisely,

under fairly general assumptions it is possible to prove that when the exact

solution u(x,v) exists in a suitable neighborhood of the computed solution

u(.,p, v), then

(7.9) Iu(XV) - u( ,P, HI(I) : E( )(l + u(1)), as E - 0.
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The term o(l) depends on the exact solution. As we saw earlier the

existence assumption is certainly needed if we want an estimate of the

form (7.9). More generally, suppose that we trace a curve v = vo = const.

Then, for a > 1 it can be shown that there exists an exact solution

u(A,v) such that

(7.10) IIu(A,p,A,'V) - u(.,Vo)ll 1  + Ix - = e(A)(l + o(l)) as E - 0.

For a solution curve defined by v = v the situation corresponding to

the two estimates (7.9) and (7.10)was schematically indicated in Figure 6.

The error estimator (7.7) is composed of the error indicators (7.6)

for the individual sub-intervals of the given mesh. For the linear case

we have shown in [9 1 that an (asymptotically) optimal mesh is achieved if

we equilibrate the error indicators, that is, if we construct a mesh for

which these indicators are equal. More specifically, we call a sequence Ak

of meshes equilibrated if

max ni C k)
(7.11) min niAk < K, Vk,

with a constant K that is independent of the particular mesh A k These

concepts provide the basis for an adaptive mesh-refinement procedure which

generates a sequence of meshes that satisfy (7.11) and for which the error

indicators are approximately equal, (see [8 ], [10], [11], [12], [461). As noted

before, the equilibration of the meshes is expected also to increase the

effectivity of the error estimator (see [12], [13]).

Suppose again that we trace a curve with v = vo = const. As we

observed in Sections 3 and 6 the position of a turning or limit point on
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this curve frequently has considerable practical interest. More specifi-

cally, we are interested in estimating the error IxT - ATI indicated

in Figure 6. Let UT = U(Ap,T' Vo) be the computed solution at the

computed critical point. Then an a posteriori estimate of IxT -TI may

be obtained by the following procedure:

(i) Compute the indicators ai, i = l,...,n, of (7.3)
and the quantity

n 2 112
(7.12) a = [ o ail •

i =1

(ii) Let p be the function corresponding to the tangent
vector (5.12) at the computed critical point and form

a

(7.13) K = 0.05 a

(iii) On every sub-interval I., i = l,...,n, compute the
finite element approximation i. of the form (7.1)
subject to the boundary conditions

(7.14) vi(s) : T(S ) + K O(st), Z i-l,i.

(iv) Form the quantities

(7.15) f [-a(ui)(;! - w!) + V(T,\ToW - wi)Idsi=l 1i

and

(7.16) T = b T,o)K ds
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where the last quantity represents a linearization
of the non-linear function of X

(7.17) [b(Ux,v O) - b(UTT,vo)JK , ds.
I

(v) Then the quotient

(7.18) e :

is the desired estimator.

Analogously as in the case of the estimator of the solution it is

possible to show that

(7.19) XT - XTI = e(l + o(l)), as c 0

where the term o(l) depends on the exact solution.
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8. Numerical Experiments

The theory outlined in the previous section raises several questions,

as, for instance, the following:

(i) In practice, how effective are the error estimators for
the computed solution and the critical values, especially
in view of the fact that the theory of these estimators is
only asymptotic in nature?

(ii) Is the quality of the estimators influenced by the type of
nonlinearity, as exemplified for instance by the three
problems (2.14)?

(iii) How effective is the adaptive procedure based on the equili-
bration of the error indicators, and, in particular, its use
in combination with the continuation process of Section 5?

In order to provide some answers to these and related questions we pre-

sent here some computational results obtained with our model problem.

We consider first the strongly nonlinear rod (2.14) (i) and, in particular,

the general shape of its equilibrium surface. Figure 9 correspoids in

essence to Figure 4 for the simple framework of Section 3. More specifically,

uniform meshes with eight subintervals and cubic C0-elements were used, and

Figure 9 shows several solution curves for v = const. plotted in a coordinate

system with x as the abscissa and the norm

(8.1) HuIll max
0'zx<l

as ordinate. Note that in contrast to the case of the framework of Figure 2

the solutions now have two turning points. The first bifurcation point occurs

approximately at A 2.8954, v = 0, and the second one at A 6.5691,

v = 0. For the linearized equation the corresponding first two eigenvalues

are 2.8954 and \ 6.1448.
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Figure 10 gives a corresponding picture of the solution curves with 5

the moment balance M(0) - MMl (see (2.16)) as ordinate in place of (8.1).

Figures 11 and 12 show the shape of the rod for v = 0.1 and variable X

and for X = 3.0 and variable v, respectively.

In order to assess the effectivity of the error estimation, we used

as "nearly exact" solution the computed solution with a uniform mesh of 10

subintervals and quintic C 0-elements. We consider the curve v = 0.1 and

on it the five target points X = 1.0, 2.5, 3.5, 2.5, 1.6. Table 1 gives

the computed moment balances M(0) - M(l) at these five points for a

uniform mesh with eight subintervals and C 0-emnt of different order

p
A1 3 5

1.0 0.1203 0.1206 0.1206

2.5 0.5362 0.5558 0.5558

3.5 2.595 2.636 2.636

2.5 2.787 2.500 2.500

1.6 2.845 2.830 2.830

Table I

Table 2 shows the computed error estimators and the "nearly exact" error

norm in percent of the norm of the solution. In these and all other compu-

tations in this section the (small) contribution of the pi-terms of (7.5)

was neglected. The table shows clearly the high quality of the estimators.

In the cases p = 4, X = 1.0) and =2.5 left bldnk in the table the

error is essentially zero within machine accuracy.
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12 3 4

Error estim. 12.15% 0.1137% 0.004089%
1 .0

Error norm 12.13% 0.1138% 0.004089%

Error estim. 11.55% 0.4306% 0.01552%
2.5

Error norm 12.04% 0.4310% 0.01552%

Error estim. 21.58% 1.597% 1.123% 0.5011%
3.5

Error norm 23.91% 1.900% 1.391% 0.5389%

Error estim. 21.53% 1.708% 1.003% 0.5013%
2.5

Error norm 21 .88% 1.865% 1.285% 0.5455%

Error estim. 19.45% 0.7632% 0.8123% 0.3171%
1.6

Error norm 19.14% 1.135% 0.9576% 0.3312%

Table 2

As Figure 10 shows there are two turning points along the curve for

v = 0.1. With a mesh of eight equal, cubic C°-elements these turning points

occur at

(8.2) xTI 3.6546, x T 1.46749.

In order to assess the effectivity of our error-estimators of these critical

value we used for the comparison five and ten equal, quadratic C0-elements,

respectively.
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Table 3 gives the result of these computations. Again the error estimators

perform very well. The table also shows that convergence of the critical

X-values is faster than that of the corresponding solution errors. In

fact, asymptotically it is expected that the critical values converge with

the square of the solution errors in the H -norm.

Est. of Limit Point
Limit No. of. SolutionI
Point Interv. Error Value Error Estim._

5 13.11% 3.699385 0.04472 0.05294

10 3.18% 3.657982 0.00317 0.00399

5 7.205% 1.470290 0.002793 0.002843

10 1.613% 1 1.467897 1 0.00040 0.000357

Table 3

In preparation for the use of the error estimators for an adaptive con-

struction of optimal meshes, we show in Table 4 the error indicators of the

solution at A = 3.5, v = 0.1 for uniform C 0-emnt of varying order.

Evidently for lower p the mesh is better equilibrated than for
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1 2 3 4 5

1 0.4085 0.2849(-l) 0.2525(-l) 0.1133(-l) 0.2058(-3)

2 0.1789 0.2149(-1) 0.2816(-2) 0.3089(-3) 0.2637(-4)

3 0.9545 0.5290(-2) 0.5770(-3) 0.4769(-4) 0.4212(-5)

4 0.7281 0.1173(-2) 0.2176(-3) 0.7614(-5) 0.9042(-6)

5 0.7281 0.1173(-2) 0.2176(-3) 0.7614(-5) 0.9060(-6)

6 0.9545 0.5290(-2) 0.5770(-3) 0.4769(-4) 0.4212(-5)

7 0.1789 0.2149(-l) 0.2816(-2) 0.3089(-3) 0.2637(-4)

8 0.4085 0.2849(-l) 0.2525(-l) 0.1133(-l) 0.2058(-3)

max riI
5.34 24.3 116. 1488. 228.

min Tqi

Table 4

higher values. (In the case p = 5 in Table 4 the very small error indicators

for the intervals with index i = 4 and i = 5 are distortet by round off

which causes their values to be too large.) The results of Table 4 indicate

that an adaptive procedure for the construction of the mesh should be

effective.

As Table 2 shows the error may vary considerably along any one solution

curve. Suppose that we wish to compute the curve for v = 0.1 with an

accuracy of 2%. For this we begin with a mesh that meets this requirement;

in our case, a uniform mesh of two quadratic C0-elements. Then during the
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continuation process we monitor the error estimators and, at any computed

point where the estimate exceeds 2%, we divide the element(s) with the

maximal error indicator. Table 5 describes the result of this adaptive

procedure for the curve v = 0.1. Quadratic elements were used throughout.

Error Indicator Rel. Error

Estimate # of
min max % Intervals Comments

0 .433(-5) .433(-5) 0.0106 2

0.5 .299(-3) .299(-3) .727 2

1.5 .201(-2) .201(-2) 2.81 2 Refine
.183(-3) .521(-3) 0.770 4

2.49 .129(-2) .421(-2) 1.68 4

2.79 .547(-3) .122(-l) 1.96 4

3.37 .156(-l) .115(-l) 5.96 4 Refine
.482(-2) .170(-l) 1.19 6

3.55 .164(-1) .491(-1) 2.38 6 Refine

.137(-l) .228(-l) 1.51 8

3.63 .139(-l) .249(-l) 1.45 8

3.66 .157(-l) .260(-l) 1.36 8 Limit Point

3.63 .216(-2) .266(-l) 1.33 8

3.44 .168(-2) .272(-1) 1.27 8

3.16 .909(-2) .272(-l) 1.22 8

2.75 .613(-2) .263(-l) 1.21 8

1.84 .107(-l) .482(-I) 1.58 8

1.54 .148(-l) .644(-1) 1.69 8

1.47 .206(-1) .752(-l) 1.94 8

1.47 .207(-l) .943(-l) 2.08 8 Limit Point

Table 5
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The run was terminated at the second limit point otherwise, at that point

a refinement would have taken place.

In comparison, the uniform mesh with the least number of quadratic

C0-elements for which the error along the same curve does not exceed 2%

is the mesh with 12 elements. Table 6 gives the corresponding results

for this uniform mesh.

Rel. Error
Error Indicators Estimate

min max % Comments

0 .271(-7) .738(-7) .310(-3)

0.5 .570(-6) .615(-5) .231(-I)

1.5 .393(-5) .335(-4) .874(-I)

2.47 .258(-4) .303(-3) .189

2.67 .283(-4) .638(-3) .214

2.83 .202(-4) .156(-2) .257

3.02 .154(-3) .508(-2) .446

3.28 .256(-3) .144(-I) .925

3.33 .262(-3) .236(-1) 1.09

3.66 .247(-3) .378(-l) 1.65 Limit Point

2.99 .543(-4) .262(-l) .976

1.90 .110(-2) .217(-l) .809

1.57 .108(-2) .223(-l) .742

1.48 .737(-3) .286(-l) .761

1.47 .598(-3) .983(-I) 2.07 Limit Point

Table 6



In order to compare the results of Tables 5 and 
6 we define the 6

work per continuation step as

(8.3) f m + f 2 .5 units,

where f 1  and f 2  are the number of function and derivative evaluations,

respectively, and m is the number of degrees of freedom (see Section 4).

For the computation with the adaptive procedure, as shown in Table 5,

the total work was 45,672 units while for the run with the uniform mesh,

given in Table 6, it was 143,383 units. Thus, the adaptive process

requires only 31 .9%/0 of the work for the fixed uniform mesh. At the same

time, a maximum of eight elements were needed during the adaptive process

while the fixed uniform mesh with the same accuracy required twelve elements.

These results are typical for problems of this type. The error usually

varies considerably along any solution curve and it is practically impossible

to design a fixed uniform, or, for that matter, non-uniform mesh for which

it can be guaranteed that the error remains below a prescribed accuracy.

Only an adaptive process which modifies the mesh in response to the computed

error estimates can accomplish this task. In our case we used only a mesh-

refinement strategy, but, obviously, it is also possible to incorporate de-

refinement when the estimates fall below a lower threshold.

It may be of interest to analyze why the fixed uniform meshes do not

perform well in the higher parts of our solution curve for v = 0.1. For

this we use a uniform mesh of eight, cubic C -leet and give in Table 7a

the error indicators for the first three intervals at various target points

along the curve v = 0.1. In addition, Table 7b shows the actual values of

the function u and its derivative u' at the corresponding nodal points

and the midpoints of these intervals. Clearly, in the upper parts of the
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curve boundary layers develop near the ends of the rod and this is re-

flected by the error indicators.

~x = 1.4675
2.5 3.5 2.5 Limit Point

1 0.1703(-4) 0.2524(-l) 0.3200(-l) 0.2778(-1)

2 0.2358(-4) 0.2816(-2) 0.3924(-2) 0.5590(-2)

3 0.2218(-4) 0.5770(-3) 0.7445(-3) 0.2720(-2)

Table 7a

: 2.5 3.5 2.5 1 1.4675

xU U ul u U. U U

0 0 0.5707 0 2.730 0 11.17 0 20.74

0.0625 0.03482 0.5409 0.1648 2.515 0.5833 7.639 1.048 13.20

0.1250 0.06726 0.4946 0.3106 2.133 0.9728 5.013 1.702 8.126

0.1875 0.09632 0.4335 0.4304 1.703 1.241 3.644 2.091 4.597

0.2500 0.1212 0.3606 0.5240 1.299 1.438 2.714 2.311 2.636

0.3125 0.1412 0.2782 0.5937 0.9358 1.585 1.989 2.442 1.628

0.3750 0.1558 0.1892 0.6417 0.6044 1.687 1.297 2.521 0.9527

Table 7b
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So far we discussed only computations with Co- elements. In order

to assess the influence on the error of different degrees of smoothness

we selected three cases with the same number of degrees of freedom (4.5),

namely m =10. The corresponding results for the solution curve defined

by v = 0.1 in the range 0 < X < 1.467 up to the second limit point

are given in Table 8:

No. of Max. Error Work
Smoothness Degree Elements in Range Units

C 0  1 11 23.81% 22,243

C 1  3 5 3.939% 20,236

C 2  5 3 0.9976% 20,919

Table 8-

The effectivity of the P-version inherent in these results corresponds to that

i n the i near case di scussed i n [ 2, [151.

All results given so far in this section concerned the strongly non-

linear rod (2.14) (i). The results are essentially analogous to that for

the mildly non-lin~ear case. However, the turning points now occur for

larger values of A. This can be seen from Figure 13 where we give the first

bifurcating solution for v = 0.0 in the three cases (2.14). Ten equal, quintic

C 0-eeet were used in each case. The effectivity of the error estimators

also remains the same in the two cases a comparison of Tables 2 and 9 shows.
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Error estim. 11.45% .5184% .01964% .6520(-3)
3.0

Error norm 11.61% .5187% .01965% .6535(-3)

Error estim. 11.87% .7603% .1023% .3493(-2)
5.0

Error norm 11.92% .7672% .1024% .2906(-2)

Error estim. 12.73% .8964% .2426% .3202(-l)
7.0

Error norm 12.83% .9296% .2447% .3202(-l)

Error estim. 14.49% 1.790% .1260% .8446(-I)
5.0

Error norm 12.26% 1.797% .1518% .8448(-I)

Error estim. 13.67% 1.166% .2288% .1595(-I)
3.0

Error norm 12.81% 1.189% .2296% .1850(-l)

Table 9

In summary the computational results of this section provide support

for the following claims:

a) The a posteriori estimators of the errors of the solution and
the critical values are very reliable for different types of
nonlinearities and all degrees of elements.

b) Higher order elements perform in general better than the lower
order ones.

c) The adaptive procedures for modifying the mesh during the con-
tinuation process is very effective and significantly increases
the effectivity of the computations.



66

9. Spurious Solutions

As mentioned in the Introduction, for nonlinear problems of the type

considered here the equilibrium surface of the discretized equations often

has a different number of connected components than that of the original

equations. The components which do not approximate reasonably well the

exact solutions in any of their parts have been called spurious, or

numerically irrelevant solutions. They have been observed by many authors

(see eg. [20], [28] and the references given there).

The phenomenon is easily observed in the case of the classical Euler

rod (2.14) (iii). For v =0 it can be shown that for A < 0 there exists

no other solution than u 0. This is physically plausible since under

pure tension the rod should remain straight. In fact, Figure 13 showed

that the first non-zero solution bifurcates from the trivial solution at

A 4.940, and hence that we should expect non-zero solutions for v = 0

only when A exceeds that value. Nevertheless, the finite element method

does produce non-zero solutions for certain negative values of A. Figure

14 shows this for the cases of uniform meshes with two, four, and six

linear Co_-elements, respectively. The limit points with respect to A for

these three paths as well as for that one obtained with eight linear elements,

are given in Table 10.

Number of XT
Elements

2 69.629
4 47.404

6 64.246

8 110.907

Table 10
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In this simple case it is easy to distinguish between the correct

solutions for X > 0 and the spurious ones for X < 0. In general,

however, the situation is more complicated and it is not readily clear

how to distinguish between the correct and the spurious solutions. Under

fairly general conditions the finite element solutions converge to the

solutions of the infinite dimensional problem. Hence, in general, the

spurious solutions have to disappear toward infinity when the mesh is re-

fined. But this need not happen monotonically as Table 10 shows.

In line with our overall philosophy, we are interested in computing

an approximate solution for which the a posteriori estimate indicates a

deviation of at most 10-15% from an exact solution. In other words, we will

accept only those segments of any computed solution path for which the

estimate does not exceed, say, 12%. The spurious solutions should carry a

much larger error and hence could be rejected on that basis. This raises

the question whether our error estimators will succeed in identifying

properly such large errors even though they were justified theoretically

only asymptotically for small errors.

The following tables show that this is indeed the case. More specifi-

cally, Table 11 gives some error estimates for the spurious solution path

obtained with a uniform mesh of eight linear C0_eemns
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Error
Hull H1 Estimate

-128.502 15.815 26.9%

-125.507 15.688 27.0%

-122.513 15.553 27.2%

-119.522 15.409 27.5%

-116.534 15.250 27.8%

-113.554 15.064 28.4%

-110.907* 14.758 30.4%

-112.192 14.632 32.5%

-115.796 14.581 35.0%

-119.599 14.585 36.8%

-123.491 14.611 38.4%

-127.417 14.651 39.9%

-131.359 14.699 41.3%

* Limit Point

Table 11

Since u 0 is the only exact solution for negative A the value of

lull 1 represents here the actual error in the H1-norm. In other words,

the actual error is 100%, and, not surprisingly, the error estimators only

have an efficiency index of about 0.27-0.41. Yet in line with the earlier

discussion any solution path such as this one with errors exceeding the

12% threshold should be rejected.

. . .. . . . .. . . I .. . .. . .. . I I in . . .. . .. . . ... . . . . .. . . . . . I In I l l l . . . II I . . .. . . .. ...
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On the other hand, Table 12 gives the error estimates for the "correct"

solution path bifurcating from the positive X-axis at about x 5.

Again a uniform mesh with eight linear elements was used.

Error
X Estimates

5.1390 11.43%

5.3264 11 43%

5.5972 11.41%

5.9553 11.41%

6.3551 11 41%

6.7940 11.42%

7.3081 11.45%

7.8960 11.49%

8.5529 11.54%

9.2715 11.62%

10.042 11.71%

10.856 11.82%

11.704 11.95%

12.579 12.09%

Table 12

If we allow a maximum error of 12% then the entire path segment up to

X 12.579 should be accepted. On the other hand, if the maximum error

is 10% then this path must be rejected and higher order elements are needed.

Hence, the question of accepting or rejecting a path segment rests solely on

our error estimate.
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Part 11: Outlook on More General Linear Problems

The results discussed in Part I above are as yet still rather re-

strictive in their applicability. Clearly, we should hope to be able to

extend them to boundary value problems in several space dimensions of the

type occurring in nonlinear structural analysis. But there are other

possible extensions as well. In this part we illustrate some of the desired

extension by means of results already obtained for the linear case.

More specifically, we begin with some computational examples of the

use of our adaptive finite element solver FEARS. This system is based on

our results cited in the Introduction about error estimators and adaptive

procedures for two-dimensional elliptic problems. Then we turn to a simple

parabolic model problem to show the possibility of applying these ideas

also in the case of certain time-dependent problems.

As indicated before the material in this Part 11 is strictly intended

only to indicate the type of results we would hope to extend also to the

nonlinear case. For more details on these linear problems we refer to the

cited articles.
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10. An Adaptive Finite Element Solver

For linear elliptic problems in two-space dimensions the theory of

a posteriori error estimates has been advanced to a point (see eg. [4 1,

[ 51, [11]) that it became possible to implement a general finite element

solver which incorporates the ideas outlined here, (see eg. [8 1, [36], [461).

More specifically, the FEARS system [Finite Element Adaptive Research Solver]

was developed at the University of Maryland and is available in FORTRAN for

use on Univac 1100 series computers and on the CDC-7600. It has the following

principal features:

(i) FEARS constitutes an applications-independent finite element
solver for a certain class of two-dimensional, linear, elliptic
boundary value problems defined by a weak mathematical formu-
lation. At present curvilinear elements of degree 1 are used.

(10.1) (ii) Adaptive approaches are employed extensively. The a posteriori
estimates developed by us (loc.cit) are used to control the
adaptive processes and to provide a solution with a near
optimal error.

(iii) In the systems design, advantage was taken of the natural
modularity of the finite element method (see [451, [46]).

Some results obtained with the system were described in L12]. We pre-

sent here some further results which illustrate the effectivity of the

adaptivye approach.

Example 1: We consider the elasticity problem for an isotropic homogeneous

material with Young's modulus E = I and Poisson's ratio v = 0.3 on the

domain shown in Figure 15 where also the boundary conditions are specified.

The energy norm is used for the error estimation. The basic mesh consisted

of eight equal, bilinear element and Figure 16 a-j provides a sequence of
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nine consecutive meshed generated by FEARS. The behavior of the (energy-

norm) error for this problem in dependence of the degrees of freedom N

is shown in Figure 17. Note that N_1 /2  is the fastest possible rate

of convergence while the rate for uniform meshes is only N -1/4 because

of the presence of the singularity. Hence, we see from Figure 17 that the

adaptive procedure provides us with a sequence of solutions with the fastest

possible rate of convergence. Finally Figure 18 gives the effectivity index

(1.1) for the estimator used in the process. Obviously, for errors of 10%

or better the accuracy is very high.

Example 2: As a second elasticity problem we consider the behavior of

isotropic, homogeneous material with E = 1, -v = 0 on a ring-domain

defined by concentric rings with radii 0.2 and 1, respectively. On the

inner ring we specify the boundary conditions u = 1 , v = 0 and on the

outer ring u = 0, v = 0. Because of the synmmetries of the solution,

we restrict the computation to a quarter of the ring with obvious boundary

conditions on the radial part of the boundary. As in Example 1 the error

is measured in the energy norm. The sequence of meshes generated by FEARS

is shown in Figure 19 and the corresponding error behavior is given in Table

13.
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No. of Degrees Actual Error Rel. Error Effect.
Elem. of Error Estim. lOOllel/Iull

Freedom Ilel IE

4 4 0.2495 0.2210 29.9% 0.885

16 24 0.1392 0.1135 16.7% 0.815

48 80 0.0784 0.0738 9.4% 0.942

145 225 0.0439 0.0434 5.3% 0.988

Table 13

Once again we see that the effectivity index 0 of (1.1) has practically

acceptable values when the accuracy of the solution is in the range of 5-10%.



Figure 19
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11. A Parabolic Problem

The ideas and approaches discussed here can also be applied to time-

dependent parabolic problems. We restrict our comments to the simple

model problem

(. T- a _ , 0 < t < T, 0 < x < 1
ax

with the initial conditions

(11.2) u(Ox) : g(x)

and boundary conditions

(11.3) u(t,O) = u(tl) - 0.

The computations involved in the method of lines consist of the following

two parts:

(i) Use a finite-element discretization of the space variable
to obtain an initial value problem for a system of ordinary

(11.4) differential equations.

(ii) Solve this system numerically by means of some adaptive solver.

The discretizations in space and time have a different character. How-

ever, the objective is to equilibrate these two errors. We sketch here the

principal idea of the error estimate of the finite element discretization

and refer for more details to [3 1.

If the time-derivative du/dt on the left of (11.1) were given, then
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the problem becomes elliptic and we know how to estimate the error in the

energy norm

2 J de 2
(11.5) Ilell2 : a(dx dx.

It is possible to show that with the values of du/dt defined by an approximate

solution of the system of differential equations (11.4) (ii) we still

obtain in this way a correct error estimator with an effectivity index that

converges to one as the error tends to zero (see [3]).

We illustrate this approach on our model problem (ll.l)-(ll.3) with

g(x) = sin 7x, a = 0.3 and T = 1 for which the differential equations

(11.4) (ii) can be solved exactly. Table 14 shows the values of the effecti-

vity index in the energy norm (11.5) at the time steps t = 1/3, 2/3, 1 in

dependence of the number n of linear elements in a uniform mesh on the

x-interval [0,1].

I/3 2/3 1

4 0.911258 0.814769 0.713659

8 0.977357 0.948020 0.910430

16 0.994310 0.986583 0.976027

32 0.998575 0.996618 0.993897

64 0.999643 0.999152 0.999614

128 0.999909 0.999786 0.999892

Table 14
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Evidently the effectivity index converges to one as n tends to infinity.

The above results assume that the differential equations (11.4) (ii)

are solved explicitly. In practice, of course, this is not the case and

we have to use one of the modern ODE-solvers as, for instance, LSODI

which handles systems in the linearly implicit form

(11.6) A(t,y)y = b(t,y).

The solver selects adaptively the stepsize and order so as to meet a

specified tolerance T. Hence, our objective will be to choose the

tolerance T as a function of the space discretization and the step and

order selection criterion of the ODE solver such that

(i) the error of the semidiscrete method is preserved
at the least cost, and

(ii) the effectivity of the estimators is maintained.

These two objectives can be achieved with considerable success. We refer

for details to [3].
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